您好!欢迎访问江南官方体育app下载网站(JN).注册登录
产品搜索:
江南官方体育app下载网站(JN).注册登录
当前位置:首页 > 产品中心 > 低压差线性稳压器
+     低压差线性稳压器
+     白光LED驱动
+     MOSFET
+     32位ARM核Cortex系列
+     CMOS逻辑电路
线nV√Hz 噪声和 120dB 电源抑制-【低压差线性稳压器】
发布时间:2024-03-20 13:56:25 来源:江南官方体育APP下载 作者:江南app官方网站

  在很多电路应用中,无噪声、良好稳定的电源对于实现最佳性能是很重要。压控振荡器 (VCO) 和精确的压控晶体振荡器 (VCXO) 会迅速响应电源的微小变化。锁相环 (PLL) 需要稳定的电源,因为电源上的信号会直接转变成输出的相位噪声。RF 放大器需要无噪声电源,因为这类放大器缺乏抑制电源变化的能力,而且稳压器变化将以不想要的边带信号形式出现,降低了信噪比。低噪声放大器和模数转换器 (ADC) 不具备无限大的

  电源一旦搭建完毕就可以确定,对于其应用而言,电源是否具有足够低的噪声。振荡器的相位噪声可以测量,然后,相对于用一个已知和性能良好的电源实现之结果,对测量结果进行比较。还要检查 ADC,以确保得到最多位数。这些测量工作比较难,需要耗费大量时间,如果可不进行费用高昂的试验就可确保噪声足够低,那会更好。

  除了噪声,还必须考虑线性稳压器电源抑制能力。能力不佳会给开关稳压器留下剩余信号或带来其他不想要的信号,从而破坏为确保拥有干净的电源所付出的艰苦努力。如果电源抑制能力不佳,留下了足够淹没噪声的信号,那么稳压器的噪声即使极低,也是没有价值的。

  噪声问题很早以前就开始提及了。2000 年 3 月凌力尔特发布了《应用指南 83》(Application Note 83),题为 “低压差稳压器的低噪声性能验证” (Performance Verification of Low Noise, Low Dropout Regulators),文中详细叙述了一种测量方法,可以有把握地测量低至 4VRMS 的稳压器输出电压噪声。该应用指南中所用的放大器电路和滤波器在 10Hz 至 100kHz 带宽时提供 60dB 增益。这是一个良好的起点,可以有把握地测量噪声水平。

  诸如 LT3042 等最新线性稳压器现已投产,其输出电压噪声低得多。在《应用指南 83》发布前后推出的该系列稳压器在 10Hz 至 100kHz 频带上的噪声约为 20VRMS,而现在 LT3042 在相同频带上的噪声低至 0.8VRMS。回顾《应用指南 83》中的电路可以看出,输入参考噪声层为 0.5VRMS,当测量低至 4VRMS 的噪声时,误差低于 1%。在输出噪声为 0.8VRMS 的现在,这样的噪声层就不可接受了,因为稳压器本身的工作噪声仅略高于测量电路。这相当于几乎高达 20% 的误差,从而使测量电路成为过于重要的因素,以至于不能有把握地测量信号。

  测量低于 1VRMS 的噪声不是一项微不足道的任务。在 10Hz 至 100kHz 测量频带上逆推,这相当于 3.16nV/Hz 噪声频谱密度 (假定噪声为白噪声)。这就相当于 625 电阻器产生的热噪声。以 5% 的误差测量这么大的噪声,要求仪器有一个 1nV/Hz 的输入参考噪声,而 1% 内的误差测量则要求 450pV/Hz 的输入参考噪声。

  我们现在对仪器要求的噪声层已有所了解,但是还有一个问题,即关键频率范围以及用什么仪器测量所产生的噪声。为了测量噪声频谱密度,可以简单地通过低噪声增益级 馈送稳压器输出,然后再馈送到频谱分析仪中,从而将不想要的频率从测量中隔离出去。如果想测量峰至峰值或 RMS 噪声,那么在低噪声增益级上要确保带阻,以确保仅测量在想要的带宽内的信号。

  常用的宽带噪声测量频率范围为 10Hz 至 100kHz。这个范围包括音频频带,可确保通过 RF 传送的基带数据产生最小的边带信号。锁相环中使用的低噪声稳压器和高准确度仪表要求在较高的频率上进行测量 (高达 1MHz 及以上),因此我们不应该将自己限制到仅 100kHz 范围。理想情况下,带阻会在想要的频率上实现绝对的砖墙式滤波,但电路设计的现实使我们无法实现这样的效果。选择较高阶的巴特沃斯 (Butterworth) 滤波器, 以保持所关注频率范围内的最大平坦度及其提供更好砖墙式近似的能力。滤波器的阶数由其等效噪声带宽 (ENB) 引入的误差决定:二阶低通巴特沃斯滤波器的 ENB 为 1.11fH,所产生的误差太大。4 阶滤波器的 ENB 降至 1.026fH,所产生的误差约为 1.3%。更高阶的滤波器会增加不必要的复杂性和成本,所带来的性能改进却很小。4 阶滤波器的误差加上输入参考噪声所引入的误差,若要以 5% 内的误差进行测量,则要求来自放大器的输入参考噪声之最大误差不超过 1%。

  电路增益也必须考虑。如果增益太低,测量仪器的噪声会加进来,像放大器的输入噪声一样,损害测量结果的准确性。同时,仪器也许不够灵敏,无法提供可靠的测量结果。就 RMS 噪声测量而言,HP3400A RMS 电压表的底部范围为 1mV,因此 60dB 是绝对最低增益。基于目前可获得的商用频谱分析仪 (而且可从二手市场获得) 之噪声层数据,人们决定 80dB 时会有最佳的工作表现。

  噪声测量电路的方框图如图 1 所示。首先是 DC 隔离构件,接下来是超低噪声增益级以 AV = 25 将输入放大。然后是一个 5Hz 的单阶高通滤波器至另一个 AV = 20 的增益构件。接下来是一个 10Hz 二阶 Sallen-Key 滤波器和最后的 AV = 20 之增益级,到此净增益达到了 1 万倍或 80dB。再后面是 3 个可选输出之一,选择哪一个取决于想要的高端频率。3 个可选输出或其频率范围分别是 1MHz 限制、前述的 100kHz 带阻、以及达到所用增益级极限的 (在 3MHz y量到 -3dB 频率) 宽带输出。每种输出之后都是最后的 5Hz 高通滤波器,以隔离任何残留 DC 信号。

  实际电路如图 2 所示。这里 DC 隔离是用 680F 电容器和紧随其后的 499电阻器组成。电容和电阻值的选择是该电路须做出的主要权衡之一。电阻器的值必须足够低,以便其后一级的基极电流不会引起极大的 DC 误差。不过,如果所选电阻值太低,该滤波器所需电容就会变得极之大。对所测试的稳压器而言,低电阻值还有可能使该滤波器成为频率补偿的组成部分,从而改变所测得的结果。电流值构成了 0.5Hz 高通滤波器。

  图 2:图 1 所示方框图的实际电路。并联的各级每个都配备了低噪声三极管差分电路,以降低噪声,同时提高增益。

  第一个增益级的架构至关重要。这一级必须提供固定增益,同时在O低的入参考噪声工作。在题为 “775 Nanovolt Noise Measurement for A Low Noise Voltage Reference” (针对低噪声电压基准的 775 毫微伏噪声测量) 的《应用指南 124》(Application Note 124) 中,介绍了已故的 Jim Williams 所做的工作,以此为基础,选择用三极管差分对驱动运算放大器的输入,以提供最佳带宽,同时仍然保持低噪声。以大约 80 倍的增益驱动差分对意味着,这对三极管的噪声起主导作用,而运算放大器的噪声不是非常重要的因素。

  超低噪声放大器第一增益级由两对匹配的 THAT300 三极对管并联组成 (以降低输入参考噪声),接着是 LT1818,该器件配置为使这一级提供 25 倍的总增益。单一 SO-14 封装中包含 4 个 THAT300 三极管,提供良好的匹配特性 (典型值为 500V VBE) 和 800pV/Hz 的典型噪声。选择 LT1818 是为了实现高增益-带宽积。

  输入三极对管和放大器级并联,可在不牺牲增益的前提下改善噪声层。人们都知道,放大器电路并联时,产生电压噪声压差,N 级并联时使噪声降低为 1/N。三极对管并联使有效噪声降至 800pV/Hz。之后,通过并联 4 个完整的输入级,这个噪声会进一步降低,再降低 2 倍,至 400pV/Hz。后续增加的噪声源很小,从而使我们能够接近 1% 准确度所要求的 450pV/Hz。

  在第一增益级之后,330F 电容器和 100 电阻器对任何偏移提供 DC 隔离,而偏移是三极管差分对和运算放大器所固有的。这还提供 5Hz 高通滤波器,从而有助于提供想要的低频带阻。所有 4 个输入级合起来构成第二个增益级,增益为 20 倍。这时,输入已经得到了放大,因此运算放大器的噪声再次成为影响很小的因素。

  10Hz 二阶高通滤波器是一个简单的单位增益 Sallen-Key 滤波器。提高这个滤波器的 Q 值,以帮助补偿单一 5Hz 高通滤波器级的频率响应,并为整个电路提供一个 10Hz 的 3dB 点。另外,这一级的 DC 隔离防止可能在前一级已经被放大的任何偏移再次被放大。如果不能在不同的级之间隔离 DC 信号,就有可能导致将放大器驱动到其轨电压上,从而使测量结果无效。每个增益级之间都放置了一个滤波器,以防止 DC 信号通过,同时提供低端带阻。

  最后一级是一个简单的负输出放大器,具可调增益以补偿组件值的变化。从这里开始,该电路分成了 3 个输出级。最大带宽直接来自一个跟随器,从而避免了低通滤波,并在满增益噪声吞吐量情况下,提供 3MHz 的最大带宽。第二个输出采用了 1MHz 4 阶巴特沃斯低通滤波器,最后一个输出采用 100kHz 4 阶巴特沃斯低通滤波器。所有这 3 个级都使用一个最终在 5Hz 的 DC 隔离 RC 滤波器。

  对任何电路而言,选择正确的组件都很重要,但是谈到超低噪声测量时,选择正确的组件甚至会更关键。噪声放大器中最关键的点是输入级,一旦确定了这第一级,很多困难也就变小了。用来直接在输入端实现 DC 隔离的 RC 滤波器必须仔细考虑。

  电阻器的选择没有很多争议,与薄膜电阻器相比,金属薄膜电阻器用来确保低 1/f 噪声。电容器则完全是另一回事,必须仔细考虑。在《应用指南 124》(Application Note 124) 中,使用了一种昂贵的液钽电容器,以提供很低的 1/f 噪声,这种电容器是手工挑选的,以选出低泄漏器件。在以低至 0.1Hz 频率工作时,这些特性更加重要。针对宽带噪声采用 10Hz 低频带阻时,较低价格的电容器可以提供可接受的性能。大型多层陶瓷电容器是一种糟糕的选择,因为它们本质上是一种压电器件,任何机械振动会把信号注入到电路中,迅速地超过所测噪声水平。此外,电压系数基于稳压器输出电压引起拐角频率变化,这个特性是不想要的。钽和铝电解质电容器价格不贵,也没有电压系数或机械敏感性问题。以前会考虑聚对苯二甲酸薄膜电容器等更加昂贵的电容器,但是低可用性、高成本和缺乏性能改进使这类电容器被排除在外了。

  即使采用那些可能的选择,电容器也确实显示出必须仔细考虑的噪声特性。大型多层陶瓷电容器能够以低噪声工作,但是已经被排除在外,因为它们对机械振动敏感。钽和铝电解质电容器产生较高的噪声 (见参考资料中 Sikula 等撰写的文章,以了解进一步的信息)。最后选择了标准钽电容器,因为这类电容器价格合理、偏置电压特性良好而且对物理振动不起反应。多个电容器并联可获得所需电压额定值和净电容,同时还可降低这些电容器导致的噪声。

  出于类似原因,第一个增益级构件和第二个增益级构件之间的隔离 / 滤波也选择用钽电容器实现。尽管使用钽电容器后,第一级的增益会导致噪声被放大,但是人们发。

江南官方体育app 上一篇:Microchip推出基于dsP 下一篇:通过主动输出放电功能来保护敏感和
江南官方体育app 江南官方体育APP下载 新闻中心 产品中心 江南app官方网站 联系我们 网站地图
产品关键词: 低压差线性稳压器 | DC/DC转换器 | AC/DC转换器 | 电源管理单元 | 霍尔开关
白光LED驱动 | 音频功放 | 电压检测 | Li-ion电池充电管理 | 场效应管 | 模拟开关
Copyright [c]2018 江南官方体育app下载网站(JN).注册登录 版权所有 All Rights Reserved.
备案号:粤ICP备170082978号-17 技术支持:江南官方体育app
地 址:深圳市宝安区航城大道航城创新工业园
    A5栋二楼2016-218
联系人:刘先生 13424245917
    张先生 13751282129
电 话:0755-86249117
传 真:0755-26502485
邮 箱:info@ztevone.com