您好!欢迎访问江南官方体育app下载网站(JN).注册登录
产品搜索:
江南官方体育app下载网站(JN).注册登录
当前位置:首页 > 产品中心 > MOSFET
+     低压差线性稳压器
+     白光LED驱动
+     MOSFET
+     32位ARM核Cortex系列
+     CMOS逻辑电路
关于MOS管的基础知识-【MOSFET】
发布时间:2024-02-22 05:44:26 来源:江南官方体育APP下载 作者:江南app官方网站

  MOS管是一种具有绝缘栅的FET,其中电压决定了器件的电导率。发明MOS管是为了克服FET中存在的缺点,如高漏极

  MOS管是迄今为止数字电路中最常见的晶体管,因为内存芯片微处理器中可能包含数十万或数百万个晶体管。由于它们可以由 p 型或 n 型半导体制成,互补的 MOS 晶体管对可用于以CMOS逻辑的形式制造具有非常低功耗的开关电路。

  MOS管是一个四端器件,具有源极 (S)、漏极 (D) 和栅极端子(G) 和体 (B) 端子。主体经常连接到源端子,将端子减少到三个。它通过改变电荷载流子(电子或空穴)流动的通道宽度来工作。

  增强型和耗尽型MOS管之间的主要区别在于施加到 E-MOS管的栅极电压应始终为正,并且它具有阈值电压,高于该阈值电压它会完全导通。

  对于 D-MOS管,栅极电压可以是正的也可以是负的,它永远不会完全导通。另外,D-MOS管可以在增强和耗尽模式下工作,而 E-MOS管只能在增强模式下工作。

  MOS管根据用于构造的材料进一步分类为n沟道和p通道。所以,一般来说,有 4 种不同类型的MOS管。

  根据MOS管的内部结构,在耗尽型 MOS管 中,栅极 (G)、漏极 (D) 和源极 (S) 引脚是物理连接的,而在增强模式下它们是物理分离的,这就是为什么增强模式MOS管的符号出现损坏。

  N 沟道MOS管和 P沟道MOS管之间的主要区别在于,在 N 沟道中,MOS管开关将保持打开状态,直到提供栅极电压。当栅极引脚接收到电压时,开关(漏极和源极之间)将关闭,在 P 沟道MOS管中,开关将保持关闭,直到提供栅极电压。

  MOS管的工作取决于MOS电容,它是源极和漏极之间的氧化层下方的半导体表面。只需分别施加正栅极电压或负栅极电压,即可将其从 p 型反转为 n 型。

  MOS管的主要原理是能够控制源极和漏极之间的电压和电流。它的工作原理几乎就像一个开关,设备的功能基于 MOS 电容。MOS电容是MOS管的的主要部分。

  当漏源电压(VDS)连接在漏极和源极之间时,正电压施加到漏极,负电压施加到源极。在这里,漏极的 PN 结是反向偏置的,而源极的 PN 结是正向偏置的。在这个阶段,漏极和源极之间不会有任何电流流动。

  如果我们将正电压 (VGG ) 施加到栅极端子,由于静电引力,P衬底中的少数电荷载流子(电子)将开始积聚在栅极触点上,从而在两个 n+ 区域之间形成导电桥。

  在栅极接触处积累的自由电子的数量取决于施加的正电压的强度。施加的电压越高,由于电子积累而形成的 n 沟道宽度越大,这最终会增加电导率,并且漏极电流 (ID ) 将开始在源极和漏极之间流动。

  当没有电压施加到栅极端子时,除了由于少数电荷载流子而产生的少量电流外,不会有任何电流流动。MOS管开始导通的最小电压称为阈值电压。

  以N 沟道 MOS管为例子来了解MOS管工作原理。取一个轻掺杂的P型衬底,其中扩散了两个重掺杂的N型区域,作为源极和漏极。在这两个 N+ 区域之间,发生扩散以形成 N 沟道,连接漏极和源极。

  在整个表面上生长一层薄薄的二氧化硅 (SiO2 ),并制作孔以绘制用于漏极和源极端子的欧姆接触。铝的导电层覆盖在整个通道上,在这个SiO2层上,从源极到漏极,构成栅极。SiO2衬底连接到公共或接地端子。

  由于其结构,MOS管的芯片面积比 BJT 小得多,与双极结型晶体管相比,其占用率仅为 5%。

  首先,我们认为在栅极和沟道之间不存在 PN 结。我们可以观察到,扩散沟道N(两个N+区域之间)、绝缘介质SiO2和栅极的铝金属层共同形成了一个平行板电容器。

  当栅极和源极之间没有施加电压时,由于漏极和源极之间的电压,一些电流会流动。让一些负电压施加在VGG上。然后少数载流子即空穴被吸引并在SiO2层附近沉降。但是多数载流子,即电子被排斥。

  在VGG处具有一定量的负电位时,一定量的漏极电流ID流过源极到漏极。当这个负电位进一步增加时,电子被耗尽,电流ID减小。因此,施加的VGG越负,漏极电流ID的值就越小。

  如果我们可以改变电压VGG的极性,相同的MOS管可以在增强模式下工作。因此,我们考虑栅极源极电压VGG为正的MOS管,如下图所示。

  当栅极和源极之间没有施加电压时,由于漏极和源极之间的电压,一些电流会流动。让一些正电压施加在VGG上。然后少数载流子即空穴被排斥而多数载流子即电子被吸引向SiO2层。

  在VGG处具有一定量的正电位时,一定量的漏极电流ID流过源极到漏极。当该正电位进一步增加时,电流ID由于来自源极的电子流动而增加,并且由于施加在VGG的电压而进一步推动这些电流。因此,施加的VGG越正,漏极电流ID的值就越大。由于电子流的增加比耗尽模式更好,电流得到增强。因此,这种模式被称为增强模式MOS管。

  PMOS管的构造和工作与 NMOS管相同。取一个轻掺杂的n-衬底,其中扩散了两个重掺杂的P+区。这两个 P+ 区域用作源极和漏极。在表面上生长一层薄薄的SiO2 。通过该层切割孔以与 P+ 区域接触,如下图所示。

  当栅极端子在VGG处被赋予比漏源电压VDD负电位时,由于存在 P+ 区域,空穴电流通过扩散的 P 沟道增加,PMOS 工作在增强模式。

  当栅极端子在VGG处被赋予比漏源电压VDD的正电位时,由于排斥,发生耗尽,因此电流减少。因此 PMOS管在耗尽模式下工作。尽管结构不同,但两种类型的 MOS管的工作原理是相似的。因此,随着电压极性的变化,这两种类型都可以在两种模式中使用。

  耗尽型 MOS管通常被称为“开关导通”器件,因为它们通常在栅极端没有偏置电压时处于闭合状态。当我们以正向增加施加到栅极的电压时,沟道宽度将在耗尽模式下增加。这将增加通过沟道的漏极电流ID。如果施加的栅极电压为负值,则沟道宽度会变小,MOS管可能会进入截止区。

  耗尽型MOS管晶体管的VI 特性介于漏源电压 (VDS ) 和漏电流 ( ID ) 之间。栅极端子处的少量电压将控制流过通道的电流。在漏极和源极之间形成的沟道将充当良导体,在栅极端子处具有零偏置电压。如果向栅极施加正电压,则沟道宽度和漏极电流会增加,而当我们向栅极施加负电压时,它们会减小。

  MOS管在增强模式下的操作类似于打开开关的操作,只有在栅极端施加正电压(+VGS)并且漏极电流开始流过器件时,它才会开始导通。当偏置电压增加时,沟道宽度和漏极电流会增加。但是,如果施加的偏置电压为零或负,则晶体管本身将保持在关闭状态。

  增强型 MOS管的 VI 特性在漏极电流 (ID ) 和漏源电压 (VDS )之间绘制。VI 特性分为三个不同的区域,即欧姆区、饱和区和截止区。截止区域是MOS管将处于关闭状态的区域,其中施加的偏置电压为零。当施加偏置电压时,MOS管缓慢地向导通模式移动,并且在欧姆区发生电导率的缓慢增加。最后,饱和区是不断施加正电压且MOS管将保持导通状态的区域。

  确保MOS管在承载选定漏极电流时保持“导通”所需的最小导通状态,栅极电压可以从上面的 VI 传递曲线确定。当VIN为高电平或等于VDD时,MOS管Q 点沿负载线移动到A点。

  由于沟道电阻的减小,漏极电流ID增加到其最大值。ID成为独立于VDD的常数值,并且仅取决于VGS。因此,晶体管的行为就像一个闭合的开关,但由于其RDS(on)值,通道导通电阻不会完全降低到零,而是变得非常小。

  同样,当VIN为低电平或降至零时,mos管Q点沿负载线从 A 点移动到 B 点。通道电阻非常高,因此晶体管就像开路一样,没有电流流过通道。

  截止区域是将处于关闭状态并且零电流流过它的区域。在这里,该装置起到基本开关的作用,并在需要它们作为电气开关操作时使用。

  然后,当使用 e-MOS管作为开关时,我们可以将截止区域或“关闭模式”定义为栅极电压,VGS

  饱和区器件的漏源电流值将保持不变,而不考虑漏源电压的增强。当漏极到源极端子的电压增加超过夹断电压值时,这种情况只会发生一次。在这种情况下,该器件用作闭合开关,其中饱和电流通过漏极到源极端流动。因此,当器件应该执行切换时选择饱和区域。

  然后,当使用 e-MOS管作为开关作为栅源电压时,我们可以定义饱和区域或“导通模式”,VGS>

  VTH。因此ID = 最大值。对于 P 沟道增强型MOS管,栅极电位相对于源极必须更负。

  通过向栅极施加合适的驱动电压,漏源通道的电阻RDS(on)可以从数百kΩ(实际上是开路)的“关断电阻”变化到“导通电阻”小于1Ω,有效地起到短路作用。

  当使用MOS管作为开关时,我们可以驱动MOS管更快或更慢地“导通”,或者通过高电流或低电流。这种将功率MOS管“打开”和“关闭”的能力允许该器件用作非常高效的开。

江南官方体育app 上一篇:MOS管的基础知识(一) 下一篇:mos管的箭头表示什么?mos管
江南官方体育app 江南官方体育APP下载 新闻中心 产品中心 江南app官方网站 联系我们 网站地图
产品关键词: 低压差线性稳压器 | DC/DC转换器 | AC/DC转换器 | 电源管理单元 | 霍尔开关
白光LED驱动 | 音频功放 | 电压检测 | Li-ion电池充电管理 | 场效应管 | 模拟开关
Copyright [c]2018 江南官方体育app下载网站(JN).注册登录 版权所有 All Rights Reserved.
备案号:粤ICP备170082978号-17 技术支持:江南官方体育app
地 址:深圳市宝安区航城大道航城创新工业园
    A5栋二楼2016-218
联系人:刘先生 13424245917
    张先生 13751282129
电 话:0755-86249117
传 真:0755-26502485
邮 箱:info@ztevone.com