您好!欢迎访问江南官方体育app下载网站(JN).注册登录
产品搜索:
江南官方体育app下载网站(JN).注册登录
当前位置:首页 > 产品中心 > CMOS逻辑电路
+     低压差线性稳压器
+     白光LED驱动
+     MOSFET
+     32位ARM核Cortex系列
+     CMOS逻辑电路
“超越摩尔定律”存内计算走在爆发的边缘-【CMOS逻辑电路】
发布时间:2024-04-08 14:30:51 来源:江南官方体育APP下载 作者:江南app官方网站

  过去几十年来,在摩尔定律的推动下,处理器的性能有了显著提高。然而,传统的计算架构将数据的处理和存储分离开来,随着以数据为中心的计算(如机器学习)的发展,在这两个物理分离的单元之间传输数据的成本越来越高,在整体延迟和能耗方面占据了主导地位。

  同时,尽管传统逻辑门具有通用性和鲁棒性,但其计算效率低下,在进行乘法、加法和非线性函数等算术计算时需要消耗大量资源。此外,通过在底层硬件层面构建多个内核来提高计算并行性也需要耗费大量资源。

  传统的计算硬件基于冯-诺依曼架构,处理和内存分离,数据需要在两者之间来回穿梭。这在处理机器学习任务时效率很低,既限制了计算速度,又浪费了电力。神经形态计算有各种不同的形式,是一种可能的解决方案,例如,IBM研究院的研究人员最新设计的芯片中受大脑启发,它将内存和处理元件共置一地,无需访问片外内存。这种被称为NorthPole的芯片能以比现有架构更快的速度和更低的能耗执行图像识别任务。

  另一种也可归入神经形态计算的方法是存内计算。在这里,计算任务被转移到存储它们的内存单元中。迄今为止,已开发出了一系列复杂的存内计算技术,用于克服冯-诺依曼瓶颈,并持续提高计算吞吐量和能效。

  CIM与“存算一体化”(in-memory computing)和内存处理密切相关,其子领域有时被称为存内逻辑。CIM的基本思想是,将数据计算移至存储数据的内存单元,从而实现原位计算,消除带宽限制和数据移动成本。

  它通常利用物理定律(如基尔霍夫电流定律)和内存阵列中的电荷共享来进行模拟计算,创建高效的计算基元,包括逻辑门和乘积(MAC)操作。此外,交叉点随机存取存储器(RAM)架构允许自然扇出,从而促进了大规模计算并行性。

  这些优势催生了各种CIM研究方向,目的是在后摩尔时代提高计算机性能,并为人工智能(AI)等应用构建计算加速器。

  CIM研究涉及从基础电子器件到高级架构和大规模系统的各个层面,可以使用新兴的电阻式存储器,也可以使用成熟的硅基存储器。尽管名称相同,但CIM技术的基本原理却大相径庭,这取决于全部或部分输入操作数是否由存储单元就地提供、计算完成后是否将输出重新就地存储在存储单元中、输入/输出数据是易失性还是非易失性,以及输入/输出数据是否以相同的物理方式表示......这些差异使得我们很难对CIM技术形成全面的认识。

  计算基元和CIM的基础部件。a)冯-诺依曼体系结构和CIM体系结构中计算原语的ouroboros模型。在冯-诺依曼计算机中,计算路线从基本逻辑门开始,提供算术运算,以支持人工神经网络等算法。所有这些计算都在处理器中执行,处理器与整个内存层次结构通信,以运行完整的程序。在当今的CIM提议中,计算一般基于存内单元中的物理MAC运算,利用物理定律进行乘法和求和。物理MAC可以很容易地在内存阵列中并行化,以进行向量和矩阵运算,这反过来又为ANN奠定了基础。b)CIM架构,包括内存阵列瓦片组、输入/输出(I/O)缓冲器和。c)包括VM和NVM在内的存储器技术,所有这些技术都可以在交叉点架构中实现CIM

  MAC是计算机运算的基本操作,它与基础布尔逻辑门的关系如图所示。在冯-诺依曼计算机中,所有操作都依赖于功能完整的逻辑门,而逻辑门又是由互补金属氧化物半导体(CMOS)晶体管构成的。逻辑门用于构建算术计算的处理核心,其中最重要的是MAC运算。由于矩阵代数的常规形式,标量MAC运算可通过顺序处理或多核并行化扩展到矢量/矩阵运算。

  最后,矩阵代数为大量算法奠定了基石,其中,ANN(和深度学习)是当今最受关注的算法。就CIM而言,其理念始于嵌入式电路物理的MAC运算,它通过基于ANN的阈值逻辑概念为逻辑门奠定了基础,而逻辑门又是通过向量运算实现的。并行MAC或逻辑门都可以沿着存储器阵列中的一列进行,尽管前者是后者的基础。在这种方法中,并行MAC和复合逻辑门都用于执行矩阵计算,例如神经网络。

  与CMOS逻辑门相比,CIM逻辑门的优势在于能将计算融合到存储器阵列中,以及交叉点RAM架构提供的大规模计算并行性。由于CIM逻辑门依赖于物理定律的模拟计算,任何线性可分离的逻辑功能都可以在一次操作中完成。因此,复杂的逻辑功能可以通过减少运算次数和降低硬件成本来轻松实现。

  全方位的CIM技术可抽象为一个等式Z = X¤Y,其中符号¤代表逻辑门或点乘运算。对于点乘,X和Y分别代表权重向量和输入向量,Z是标量输出;对于逻辑门,X和Y是两个输入操作数,Z是逻辑输出。

  根据X和Y是否由存储单元提供,以及计算结束时输出Z是否重新存储在存储单元中,CIM被分为六类:XYZ-CIM、XZ-CIM、Z-CIM、XY-CIM、X-CIM和O-CIM。

  全方位的CIM技术。每种类型的CIM都标明了候选存储器、计算基元和主要应用。频谱是在将并行MAC(点积)和逻辑门抽象为Z = X¤Y的基础上建立的,其中X和Y可以是标量或向量,Z是标量,¤是表示CIM操作的符号。所有CIM技术分为六种类型,从全部在内存中到不在内存中,每种类型都有若干NVM和/或VM种类,进而针对通用或特定应用

  X和Y均由阵列中的存储单元提供,输出Z也重新存储在一个存储单元中。计算依赖于X和Y的隐式读出,从而修改BL电位,最终改写输出单元。XYZ-CIM是典型的布尔逻辑运算,已通过单位非易失性RRAM、PCM、MRAM和易失性DRAM实现。

  在计算过程中,只有一个输入操作数驻留在内存单元中。另一个输入由外部施加的电压编码,输出Z在计算结束时重新存储为单位单元状态。XZ-CIM仅适用于基于NVM的逻辑运算,典型的存储器技术包括RRAM和MRAM。

  存储单元中只存储输出Z,输入通过BL和WL提供。考虑到BL和WL电压的所有可能组合,由此产生的单比特单元状态构成一个逻辑门。Z-CIM已在RRAM、MRAM和PCM等NVM上实现。

  输入操作数X和Y均由存储单元提供,而输出Z则通过BL检测放大器 (SA) 获得。它也适用于逻辑运算,存储器技术可以是电阻式NVM或SRAM。它的工作原理是并行读出两个单比特存储单元,并将读出结果感应和离散化为二进制输出。

  只有输入X由阵列中沿一列的存储单元提供,Y由施加到WL的外部电压表示,输出Z则在BL外围获得。与上述类型的CIM不同,X-CIM通常旨在以高度并行的方式执行两个向量的点乘。所有存内技术,包括单比特或多比特NVM和单比特VM都已实现了X-CIM,这为进一步鼓励其研究提供了积极反馈。

  这里没有存储单元之间的交互,而是将传统逻辑门或计算模块置于存储单元或阵列附近进行计算。O-CIM通常采用成熟的存储器技术进行设计,包括SRAM和DRAM。它类似于早期的近存储器计算概念,但其进步在于进一步缩短了存储器与处理器之间的距离。

  由于全面识别了输入的来源和输出的方向,基于该分类法的频谱应涵盖所有CIM技术。在频谱的末端,它与传统的冯-诺依曼范式相联系。在这一范围内,特定的存储技术可能被用于多种类型的CIM,但原理各不相同。另一方面,某些类型的CIM在技术上可能只适用于特定的内存设备,或只值得关注。此外,计算基元与CIM类型相关,并最终与存储器载体相关。

  除O-CIM外,所有其他CIM类型都依赖于模拟乘法、加法和电路中物理定律的非线性激活。将前两种运算结合起来,就可以得到用于并行MAC运算的点乘,而将所有三种运算结合起来,就可以得到布尔逻辑门。

  XYZ-CIM、XZ-CIM和Z-CIM的共同点是将输出Z原位存储在存储单元中。它们都主要使用新兴的NVM进行逻辑运算。由于新兴NVM通常是基于电阻的存储器,因此可将其视为一般的两端电阻开关 (RS) 器件。通常情况下,当器件两端的电压足够大且具有正负极性时,就会通过“设置”切换到高导状态(HCS),或通过“复位”切换到低导状态(LCS)。

  这种描述适用于RRAM、MRAM和FTJ。由于CIM通常只使用一种开关极性,因此单极性开关PCM也可包含在此模型中。两种电导状态编码二进制1和0,与传统存储器应用相同。对于逻辑门,计算依赖于器件的条件开关,这是其他器件状态和外加电压的函数。这种非线性特性可视为 ANN中的激活函数。

  在XYZ-CIM建议中,一种突出的方法是基于所谓的有状态逻辑,利用NVM器件(通常是RRAM)实现。蕴含(IMP)门最初是为有状态逻辑运算而提出的,一个RRAM单元的电导状态编码输入操作数X,而另一个单元则代表操作前和操作后的输入Y和输出Z。电阻的电导值大致设定在LCS和HCS的对数值中间。

  Vp(例如,Vw/2)和Vw分别施加到两个WL中的一个不同的WL。

江南官方体育app 上一篇:荷兰超连续谱激光器公司获“Wi- 下一篇:PLC梯形图的运行方式 PLC梯
江南官方体育app 江南官方体育APP下载 新闻中心 产品中心 江南app官方网站 联系我们 网站地图
产品关键词: 低压差线性稳压器 | DC/DC转换器 | AC/DC转换器 | 电源管理单元 | 霍尔开关
白光LED驱动 | 音频功放 | 电压检测 | Li-ion电池充电管理 | 场效应管 | 模拟开关
Copyright [c]2018 江南官方体育app下载网站(JN).注册登录 版权所有 All Rights Reserved.
备案号:粤ICP备170082978号-17 技术支持:江南官方体育app
地 址:深圳市宝安区航城大道航城创新工业园
    A5栋二楼2016-218
联系人:刘先生 13424245917
    张先生 13751282129
电 话:0755-86249117
传 真:0755-26502485
邮 箱:info@ztevone.com